Geometric Potential Assessment for ZY3-02 Triple Linear Array Imagery
نویسندگان
چکیده
ZiYuan3-02 (ZY3-02) is the first remote sensing satellite for the development of China’s civil space infrastructure (CCSI) and the second satellite in the ZiYuan3 series; it was launched successfully on 30 May 2016, aboard the CZ-4B rocket at the Taiyuan Satellite Launch Center (TSLC) in China. Core payloads of ZY3-02 include a triple linear array camera (TLC) and a multi-spectral camera, and this equipment will be used to acquire space geographic information with high-resolution and stereoscopic observations. Geometric quality is a key factor that affects the performance and potential of satellite imagery. For the purpose of evaluating comprehensively the geometric potential of ZY3-02, this paper introduces the method used for geometric calibration of the TLC onboard the satellite and a model for sensor corrected (SC) products that serve as basic products delivered to users. Evaluation work was conducted by making a full assessment of the geometric performance. Furthermore, images of six regions and corresponding reference data were collected to implement the geometric calibration technique and evaluate the resulting geometric accuracy. Experimental results showed that the direct location performance and internal accuracy of SC products increased remarkably after calibration, and the planimetric and vertical accuracies with relatively few ground control points (GCPs) were demonstrated to be better than 2.5 m and 2 m, respectively. Additionally, the derived digital surface model (DSM) accuracy was better than 3 m (RMSE) for flat terrain and 5 m (RMSE) for mountainous terrain. However, given that several variations such as changes in the thermal environment can alter the camera’s installation angle, geometric performance will vary with the geographical location and imaging time changes. Generally, ZY3-02 can be used for 1:50,000 stereo mapping and can produce (and update) larger-scale basic geographic information products.
منابع مشابه
The Geometric Calibration and Validation for The ZY3-02 Satellite Optical Image
Chinese ZY3-02 satellite, which is the second of ZY3 series satellites, was launched in May 30th 2016 for complementing the mapping and earth observation. In order to eliminate various system errors of the platform and payload, the on-orbit geometric validation and calibration was carried out. Firstly, we introduced the parameters of the three-line stereo camera and multispectral camera bound o...
متن کاملZY3-02 Laser Altimeter Footprint Geolocation Prediction
Successfully launched on 30 May 2016, ZY3-02 is the first Chinese surveying and mapping satellite equipped with a lightweight laser altimeter. Calibration is necessary before the laser altimeter becomes operational. Laser footprint location prediction is the first step in calibration that is based on ground infrared detectors, and it is difficult because the sample frequency of the ZY3-02 laser...
متن کاملPointing Angle Calibration of ZY3-02 Satellite Laser Altimeter using Terrain Matching
After GLAS (Geo-science Laser Altimeter System) loaded on the ICESat (Ice Cloud and land Elevation Satellite), satellite laser altimeter attracts more and more attention. ZY3-02 equipped with the Chinese first satellite laser altimeter has been successfully launched on 30 May, 2016. The geometric calibration is an important step for the laser data processing and application. The method to calcu...
متن کاملNo-reference Image Quality Assessment for Zy3 Imagery in Urban Areas Using Statistical Model
More and more high-spatial resolution satellite images are produced with the improvement of satellite technology. However, the quality of images is not always satisfactory for application. Due to the impact of complicated atmospheric conditions and complex radiation transmission process in imaging process the images often suffer deterioration. In order to assess the quality of remote sensing im...
متن کاملMatching Multi-Source Optical Satellite Imagery Exploiting a Multi-Stage Approach
Geometric distortions and intensity differences always exist in multi-source optical satellite imagery, seriously reducing the similarity between images, making it difficult to obtain adequate, accurate, stable, and well-distributed matches for image registration. With the goal of solving these problems, an effective image matching method is presented in this study for multi-source optical sate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017